Frames No Frames Cognitoware API v2009512
Cognitoware.Robotics.dll
Cognitoware.Robotics.StateEstimation

Interface ExtendedKalmanSensorModel<Z, X>
Z: The observation type.
X: The x type.

Implemented Interfaces

Cognitoware.Robotics.StateEstimation.GaussianSensorModel<Z>
Cognitoware.Robotics.StateEstimation.SensorModel<Z>

Summary

A Gaussian sensor model that can generate a Jacobian matrix at any point.

Method Summary

ConditionalProbabilityOf(Z, X)
Inherited from Cognitoware.Robotics.StateEstimation.SensorModel
GetError(Z)
Inherited from Cognitoware.Robotics.StateEstimation.GaussianSensorModel
GetJacobian(Z)
Returns the gradient of the non-linear sensor model for the specified observation.
GetMean(X)
Inherited from Cognitoware.Robotics.StateEstimation.GaussianSensorModel

Details

A Gaussian sensor model that can generate a Jacobian matrix at any point. This sensor model can be non-linear. The Jacobian matrix represents the gradient of the non-linear function at a point on the function. This gradient linearizes the non-linear function around a local area.

Method Details

public virtual Matrix GetJacobian(Z observation)
Returns the gradient of the non-linear sensor model for the specified observation. Let Xi be the ith dimension of the input x (X = [x, y, z] = [Z0, Z1, Z2]). Also let gi(z, x) calculate the ith dimension of the observation. Hi,j = ∂gi / ∂Xj.

Parameters:

observation - The expected observation made at a x.

Returns:

The Jacobian matrix of the non-linear sensor model at the specified observation.


Questions, Comments and Licensing
Copyright 2009 Cognitoware. All rights reserved.